13.9.11

# Klein - Gordon #

E^2 \ = \ \vec{p}^{~2} \ c^2 \ + \ m^2 \ c^4
- \ \hbar^2 \ \frac{{\partial}^2\Psi(\vec{r},t)}{{\partial}t^2} \ = \ - \ \hbar^2 \ c^2 \ \Delta \ \Psi(\vec{r},t) \ + \ m^2 \ c^4 \ \Psi(\vec{r},t)
 \left( \ \Box \  + \ \frac{m^2c^2}{\hbar^2} \ \right) \ \Psi(\vec{r},t) \ = \ 0
 \Box \ = \ \frac{1}{c^2} \ \frac{{\partial}^2 ~~}{{\partial}t^2} \ - \ \Delta
 ( \partial_{\mu} \partial^{\mu}  + m^2 ) \Psi = 0 \partial^{\mu}=\left(\frac{\partial}{\partial t},-\vec{\nabla}\right)

Aucun commentaire:

Enregistrer un commentaire